Göm menyn

Onsdag 3 maj 2017, David Rule, MAI

Seminariet är ett samarrangemang med Matematiska kollokviet.

Talare: David Rule, MAI

Titel: The global boundedness of Fourier integral operators on local Hardy spaces

Tid och plats: Onsdag 3 maj 2017, Hopningspunkten, 13.15–14.15

Sammanfattning: The question of the local $L^p$-boundedness of Fourier integral operators when $p\neq2$ was answered in work of Seeger-Sogge-Stein in the early nineties. But only recently have Ruzhansky-Sugimoto found sufficient conditions to prove global $L^p$-boundedness. We build on their methods to prove the global boundedness of Fourier integral operators in the (mostly quasi-Banach) setting of local Hardy spaces $h^p$ in the range $n/(n+1) < p \leq 1$. This is joint work with Salvador Rodríguez-López and Wolfgang Staubach.


Sidansvarig: karin.johansson@liu.se
Senast uppdaterad: 2017-04-06