Göm menyn

Polopoly kommer stängas 15 december 2023. Innan dess behöver kvarvarande sidor flyttas eller tas bort. Medarbetare kan läsa mer på FAQ Polopoly Avveckling

Den efterfrågade sidan finns ej på det önskade språket.

Till nästa tillgängliga sida.


Den efterfrågade artikeln finns för dessa språk..

Page in English.

MAI0129
Stochastic Galerkin Methods for Partial Differential Equations

Number of credits: 5 hp

Examiner: Jan Nordström

Course literature:

GX08: Gottlieb, Xiu, Galerkin Method for Wave Equations with Uncertain Coefficients, Commun. Comput. Phys., Vol. 3, No. 2, pp. 505-518, 2008.

PIN15: Pettersson, Iaccarino, Nordström, Polynomial Chaos Methods for Hyperbolic Partial Differential Equations, Springer, 2015.

TPME11: Tuminaro, Phipps, Miller, Elman, Assessment of Collocation and Galerkin Approaches to Linear Diffusion Equations with Random Data, International Journal for Uncertainty Quantification, Vol. 1, No. 1, pp. 19-33, 2011.

XK02: Xiu, Karniadakis, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, CMAME, Vol. 191, pp. 49274948, 2002.

Course contents:

Basic Concepts

Introduction

Representation of random fields via spectral expansions:

PDE Theory

Reading Material: TPME11.

 

Linear Problems

Hyperbolic Problems

Parabolic Problems

Elliptic Problems

Reading Material: XK02, GX08

 

Non-intrusive Methods

Summary of the material from day 1-2

Non-intrusive methods

Reading material: TPME11

 

Nonlinear Problems (Burgers' equation)

Nonlinear analysis for stochastic problem guided by deterministic analysis

Analysis of the exact solution of the stochastic Burgers' equation 

Introduction to project work/assignments

Reading material: PIN15 Ch. 6

 

Advanced topics

Sensitivity of different PDEs

Multiple stochastic dimensions

Alternative gPC basis functions: wavelets, spatially adaptive gPC

 

Organisation: Lectures and exercises, mixed.

Examination: Work in small groups (or individually) on a mini project. Project topics will be provided by the lecturers. The deliverables include a report (5 pages) and mandatory homework.

Prerequisites: Basic knowledge in computational mathematics and mathematical statistics.

 

Course web page

 


Sidansvarig: karin.johansson@liu.se
Senast uppdaterad: 2022-11-14