MAI0116
Theory of Real Interpolation, an Introduction)/
Reell interpolationsteori, introduktion
Number of credits: 8 hp
Examiner: Irina Asekritova and Natan Kruglyak
Course literature: 1) J. Bergh, J. Löfström, Interpolation Spaces. Introduction, Berlin, Springer, 1976.
2) C. Bennet, R. Sharpley, Interpolation of Operators, Academic Press, series: Pure and applied mathematics v. 129, 1988.
Course contents: Some fundamental results in functional analysis: duality and reflexivity (Hahn-Banach theorem, James theorem). Rearrangement-invariant Banach function spaces (decreasing rearrangement and its properties, fundamental function, maximal function).
Banach couples, interpolation spaces, Riesz-Thorin interpolation theorem, K-,L-, E-functionals (properties and connections), real interpolation spaces constructed by K-,L-, E-functionals, equivalence theorem, reiteration theorem. Theorem on K-divisibility and general reiteration theorem. Power theorem, duality theorem. Marcinkiewicz theorem and interpolation in the scale of rearrangement-invariant Banach function spaces (Lorentz spaces).
Organisation: Lectures and seminars.
Examination: Oral presentation of assignments given during the course.
Prerequisites: A standard course on functional analysis.
Page manager:
karin.johansson@liu.se
Last updated: 2022-11-15