Hide menu

Polopoly will be shut down December 15, 2023. Existing pages will have to be moved before or will be removed at that date. Empolyees may read more at FAQ Polopoly Avveckling

Optimal control, brief introductory course

Number of credits: 1 hp

Examiner: Gunnar Aronsson

Course literature: J. Macki, A. Strauss: Introduction to optimal control theory, Springer Verlag 1995. Lawrence C. Evans: An introduction to mathematical optimal control theory; Version 0.2. University of California, Berkeley. Lecture notes, available from Evans' home page.

Course contents:

  1. Some mathematical basics, like: Caratheodory solution concept for ODE; Mayer problem, Bolza problem; Big-bang principle (without proof); variational system, adjoint system; Time-optimal problems; "Spike variations".
  2. First cases of a Boltyanski-Pontryagin maximum principle; Adjoint response, transversality condition; Adjoint vector seen as shadow values; Hamiltonian function; Economic interpretation of the maximum principle; Hamilton-Jacobi-Bellman equation.
  3. Examples, most of them from economics.
  4. Deriving a maximum principle for problems with fixed time and fixed end-point. A more difficult Bolza problem. Basic perturbation formula. A covering property of continuous mappings; A B-P maximum principle.

Organisation: 10 teorilektioner + 4 lektioner för lösning av övningsuppgifter.

Examination: Tillräcklig närvaro under kursen + deltagande i problemlösning.

Prerequisites: Flevariabelanalys + (helst) någon kunskap om ordinära differentialekvationer.

Page manager: karin.johansson@liu.se
Last updated: 2022-11-15