Göm menyn

Den efterfrågade sidan finns ej på det önskade språket.

Till nästa tillgängliga sida.


Den efterfrågade artikeln finns för dessa språk..

Page in English.

MAI0106
Numerical Methods for Initial Boundary Value Problems/
Numerisk lösning av tidsberoende partiella differential ekvationer

Number of credits: 15 hp

Examiner: Jan Nordström

Course literature: High order difference methods for time-dependent PDE by Gustafsson,B., Springer Series in Computational Mathematics (2008).

Course contents: Fundamental properties for initial boundary value problems (IBVP's). The concepts of well-posedness for the IBVP. The crucial role of boundary conditions. Effects of unceartainty in data for the IBVP. Fundamental properties for numerical methods applied to the IBVP: concistency, convergence, stability, efficiency. Methods for analysis of finite difference schemes for IBVP's. Higher order approximations. Methods for complex geometries: multi-block methods, unstructured finite volume methods, discontinuous Galerkin methods, spectral difference methods.

Organisation: Lectures and compulsory assignments.

Examination: There will be 6 mandatory problems to be done as home work. No exam in class.

Prerequisites: Basic courses in calculus, linear algebra, ordinary differential equations, Fouriertransforms, Laplacetranforms and vector calculus.

Course web page


Sidansvarig: karin.johansson@liu.se
Senast uppdaterad: 2015-04-14