Polopoly will be shut down December 15, 2023. Existing pages will have to be moved or removed before that date. Empolyees may read more at FAQ Polopoly Avveckling
6FMAI14
Matrix Analysis/
Matrisanalys
(earlier MAI0098)
Number of credits: 8 hp
Examiner: Göran Bergqvist
Course literature: Horn and Johnson: Matrix Analysis (recommended), lecture notes.
Course contents:
- Special matrices: Toeplitz, circulant, Vandermonde, Hankel, and Hessenberg matrices.
- Block matrices: inversion formulas, Schur complement.
- Real and complex canonical forms.
- Vector and matrix norms.
- Eigenvalues: location, inequalities, perturbations, Rayleigh quotients, variational characterization. Hadamard´s inequality.
- Singular values: inequalities, variational characterization, Schatten and Ky Fan norms.
- Total least squares. Quadratic minimization with linear constraints.
- Matrix products: Kronecker, Hadamard and Khatri-Rao products.
- Matrix equations. Stable matrices.
- Functions of matrices.
- Matrices of functions, matrix calculus and differentiation.
- Multilinear algebra, tensor product, decomposition and approximation of tensors.
Organisation: Lectures.
Examination: Hand-in assigments and oral presentations.
Prerequisites: Linear Algebra, honours course (TATA53) or equivalent (the following topics should be familiar: complex vector spaces, the spectral theorem for Hermitian and normal operators, the singular value decomposition, the Jordan normal form).
Page manager:
karin.johansson@liu.se
Last updated: 2023-02-27