Göm menyn

Polopoly kommer stängas 15 december 2023. Innan dess behöver kvarvarande sidor flyttas eller kommer tas bort. Medarbetare kan läsa mer på FAQ Polopoly Avveckling

Den efterfrågade sidan finns ej på det önskade språket.

Till nästa tillgängliga sida.

Den efterfrågade artikeln finns för dessa språk..

Page in English.

Heuristic Search Methodologies/
Heuristiska sökmetoder

Number of credits: 8 hp

Examiner: Torbjörn Larsson

Course literature: Metaheuristics: from design to implementation, E.-G. Talbi, Wiley, 2009.

Course contents: Common concepts for metaheuristics: optimization models and methods, representation, objective function, constraint handling, performance analysis. Single-solution based metaheuristics: fitness landscapes, local search, simulated annealing, tabu search, variable neighbourhood search. Population-based metaheuristics: evolutionary algorithms, swarm intelligence. Metaheuristics for multiobjective optimization: multiobjective optimization, fitness assignment strategies, performance evaluation and Pareto front structure. Hybrid metaheuristics: combining metaheuristics with mathematical programming, constraint programming, machine learning and data mining. Parallel design of metaheuristics.

Organisation: Seminars where the participants present the course topics and solutions to selected exercises from the book. Implementation projects on applications of metaheuristics.

Examination: Active participation with presentation of course topics, solutions to exercises and results of projects.

Prerequisites: Undergraduate courses in mathematics, optimization and computer science.

The course is eligible also on advanced level, that is, for master's students, see TA1015 Heuristic Search Methodologies/Heuristiska sökmetoder.

Course homepage

Sidansvarig: karin.johansson@liu.se
Senast uppdaterad: 2022-11-15