Hide menu

Teichmüller spaces/

Number of credits: 12 hp

Examiner: Milagros Izquierdo

Course literature: S Nag: The complex analytic theory of Teichmüller spaces (Wiley-Interscience, 1988)

Course contents: Meromorphic and analytic continuation. Riemann surfaces, automorphic functions, quasiconformal mappings. Teichmüller space, Fricke coordinates and Teichmüller modular group. The complex structure of the Teichmüller space: the Bers projection and the Ahlfors-Weill local sections of the Bers projection. Deformation of Fuchsian groups and Teichmüller space.

Organisation: Seminars.

Examination: Hand-in assignments and seminars.

Prerequisites: Möbius transformations and analytic functions. Algebraic curves.

Page manager: karin.johansson@liu.se
Last updated: 2022-11-15