MAI0023
Teichmüller spaces/
Teichmüllerrum
Number of credits: 12 hp
Examiner: Milagros Izquierdo
Course literature: S Nag: The complex analytic theory of Teichmüller spaces (Wiley-Interscience, 1988)
Course contents: Meromorphic and analytic continuation. Riemann surfaces, automorphic functions, quasiconformal mappings. Teichmüller space, Fricke coordinates and Teichmüller modular group. The complex structure of the Teichmüller space: the Bers projection and the Ahlfors-Weill local sections of the Bers projection. Deformation of Fuchsian groups and Teichmüller space.
Organisation: Seminars.
Examination: Hand-in assignments and seminars.
Prerequisites: Möbius transformations and analytic functions. Algebraic curves.
Page manager:
karin.johansson@liu.se
Last updated: 2022-11-15