Lean Supply Chain in the Construction Industry using the SCOR Model

By Fredrik Persson and Rajesh Maddineni

Linköpings universitet
Department of Science and Technology
Campus Norrköping

FAIM 2008
Skövde, Sweden
Content

• Research idea
• The SCOR Model
• Lean Supply Chain
• Extended SCOR Model
• The Construction Industry
• A Case Study
• Conclusions and Outlook
Research idea

• The SCOR model is a useful tool when improving operations in a supply chain (Supply Chain Operations Reference Model)

• Improving operations is today (for some companies) equal with Lean initiatives

• Question?
 - What in the SCOR model can be considered Lean or Agile?
 - How can that information be used?

• Answer:
 - A list of Lean and Agile: Best practices, metrics, and process characteristics
 - A case study from the construction industry
The SCOR Model – Level 1

Supply Chain Operations Reference Model

Level 1

Source: SCOR 8.0
The SCOR Model – Level 2

- **Directive #1**: Focus on the SCOR Model Level 2

Source: SCOR 8.0
SCOR – Best Practices (M1)

<table>
<thead>
<tr>
<th>Accurate and Approved Work Instructions/Process Plans</th>
<th>Electronic document management that maintains current Standard Operating Procedures (SOP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source: SCOR 8.0</td>
<td>Source: SCOR 8.0</td>
</tr>
</tbody>
</table>

Cellular Manufacturing

- Manufacturing is broken into work cells

Lean Manufacturing

- Use a team based systematic approach to identifying and eliminating wasteful, or non-value adding activities within your manufacturing organization

Key Practices of Lean Manufacturing

- Migrate from silos to single to configure to order, build subassemblies to forecast at the highest generic level in the Bill of Material/Recipe/Formula.
- Organize for enhanced flexibility, few job classifications, staff oriented work force.
- Flat Management Structure, Cross-Functional Work Teams.
- Physical Order Tracking and Customer Visibility of Orders.
- Paperless Production Order and Inventory Tracking.
- Performance Results that are Company to Identify/Assess Security, customers, and equipment, Readily Available to Employees.
- Post-Performance Results.
- Postponement.
- Production Lead Times.
- Provide Continuous Formal Training to Employees.

Source: SCOR 8.0
SCOR – Metrics

<table>
<thead>
<tr>
<th>Performance Attribute</th>
<th>Performance Attribute Definition</th>
<th>Level 1 Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Chain Reliability</td>
<td>The performance of the supply chain in delivering: the correct product, to the correct place, at the correct time, in the correct condition and packaging, in the correct quantity, with the correct documentation, to the correct customer.</td>
<td>Perfect Order Fulfillment</td>
</tr>
<tr>
<td>Supply Chain Responsiveness</td>
<td>The speed at which a supply chain provides products to the customer.</td>
<td>Order Fulfillment Cycle Time</td>
</tr>
<tr>
<td>Supply Chain Flexibility</td>
<td>The agility of a supply chain in responding to marketplace changes to gain or maintain competitive advantage.</td>
<td>Upside Supply Chain Flexibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upside Supply Chain Adaptability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Downside Supply Chain Adaptability</td>
</tr>
<tr>
<td>Supply Chain Costs</td>
<td>The costs associated with operating the supply chain.</td>
<td>Supply Chain Management Cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cost of Goods Sold</td>
</tr>
<tr>
<td>Supply Chain Asset Management</td>
<td>The effectiveness of an organization in managing assets to support demand satisfaction. This includes the management of all assets: fixed and working capital.</td>
<td>Cash-to-Cash Cycle Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Return on Supply Chain Fixed Assets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Return on Working Capital</td>
</tr>
</tbody>
</table>

Source: SCOR 8.0
Lean Supply Chain

- **Lean** Supply Chain is a Supply Chain based on **Lean** principles
 - Eliminating waste
 - Short lead times
 - Small batch size
 - Low inventories, etc.
- **Lean** is production and transportation at low costs
- **Agile** is production and transportation to meet customer demands
- The Customer Order Decoupling Point often separate the two
- **Directive #2**: Focus both on **Lean** and on **Agile** initiatives
Extended SCOR Model

Extended with Lean principles

Agile
1. Quality
2. Cost
3. Lead Time

Lean
1. Quality
2. Cost
3. Service Level

Market Qualifiers

Market Winners

Source: Mason-Jones et al. 2000
Extended SCOR Model

<table>
<thead>
<tr>
<th>Process element</th>
<th>Lean characteristics</th>
<th>Agile characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 Source make-to-stock</td>
<td>- Less time and cost for scheduling.</td>
<td>- Multiple sourcing options.</td>
</tr>
<tr>
<td>S2 Source make-to-order</td>
<td>- Less days for engineering and schedule changes.</td>
<td>- Flexible lead times.</td>
</tr>
<tr>
<td>S3 Source engineer-to-order</td>
<td>- Deliveries according to the project scheduling.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Maximum percentage of orders/lines completed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Direct shipment to project site may reduce costs and time delays.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Maximum orders/lines received in time.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Less cost and time for verifying products.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Maximum percentage of products transferred on time.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Maximum fill rate and maximum inventory days of supply.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Less returns and transaction errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Less time for supplier selection.(ETO)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Faster negotiations and selecting good suppliers. (ETO)</td>
<td></td>
</tr>
</tbody>
</table>
Construction Industry

• The Construction Industry in Sweden
 - 60,000 companies
 - EUR 32 Billion turnover
 - 450,000 employees
The Case Study

• The generic supply chain for Peab (AS IS)
The Case Study

<table>
<thead>
<tr>
<th>Process element</th>
<th>Lean possibility</th>
</tr>
</thead>
</table>
| S1, S2, S3 | – Sourcing should be done according to the sourcing plans of S2, S3.
| | – Maximum orders received in time.
| | – Fewer errors in products received.
| | – Maximum fill rate.
| | – Orders should arrive simultaneously.
| | – Multiple suppliers for emergency requirements. |
| M1, M2, M3 | – Produced depending on Demand for M3 at construction site.
| | – Less defects.
| | – Less Engineering Changes (M2, M3). |
| S1 | – Lot Purchasing is appreciable.
| | – Selected so that can be for multiple projects. |
| M3(at PEAB) | – Scheduled according to the demand at construction site.
| | – Less defects.
| | – Less engineering changes results in less changes in machinery setups.
| | – Producing at a time for the whole demand for the construction site is appreciable. |
| D1, D2, D3 | – Minimal delivery errors in case of M1.
| | – Less costs for delivery.
| | – Merge in transit is better solution. |
Conclusions

• This paper has introduced the concept of lean principles into the SCOR model.
 - The lean principles are already part of the SCOR model but are here identified and listed.
 - Facilitate the implementation of lean principles in a supply chain.
• The SCOR model contain standardized processes
• To use the SCOR model is to introduce standardized processes in a supply chain for the opportunity of lean supply chain.
Thank you!

This research is sponsored by Brains & Bricks.

In Brains & Bricks, Linköping University cooperates with Peab and the local authorities in the Katrineholm area.

www.liu.se/b2