Göm menyn

Matematiska kollokviet

Organiserat av Anders Björn, Milagros Izquierdo, Vladimir Kozlov och Hans Lundmark.

Du kan få ett dynamiskt uppdaterat schema till din dator eller smartphone från Google Calendar – se Smartphoneinstruktioner.


Aktuella seminarier

Onsdag 1 mars 2017, Milagros Izquierdo, MAI

Talare: Milagros Izquierdo, MAI

Titel: On the Connectivity of Branch Loci of Spaces of Curves  

Tid och plats: Onsdag 1 mars 2017, Hopningspunkten, 13.15–14.15

Sammanfattning: Since the 19th century the theory of Riemann surfaces has a central place in mathematics putting together complex analysis, algebraic and hyperbolic geometry, group theory and combinatorial methods.
Since Riemann, Klein and Poincaré among others, we know that a compact Riemann surface is a complex curve, and also the quotient of the hyperbolic plane by a Fuchsian group. In this talk we study the connectivity of the moduli spaces of Riemann surfaces (i.e in spaces of Fuchsian groups). Spaces of Fuchsian groups are orbifolds where the singular locus is formed by Riemann surfaces with automorphisms:  the branch loci: With a few exceptions the branch loci is disconnected and consists of several connected components.
This talk is a survey of the different methods and topics playing together in the theory of Riemann surfaces. 

Sun Jan 01 13:18:00 CET 2017

Onsdag 8 mars 2017, Natan Kruglyak, MAI

Talare: Natan Kruglyak, MAI

Titel: Theory of Interpolation (review)

Tid och plats: Onsdag 8 mars 2017, Hopningspunkten, 13.15–14.15

Sammanfattning: A year ago I gave a talk during which I have discussed what was done in interpolation theory before 1980. Now I plan to remind  (shortly) what was discussed last year and will focus on some results which were obtained after 1980.

Sun Jan 08 14:51:00 CET 2017

Onsdag 15 mars 2017, Håkan Hedenmalm, KTH

Talare: Håkan Hedenmalm, KTH

Titel: Bloch functions, asymptotic variance, and geometric zero packing

Tid och plats: Onsdag 15 mars 2017, Hopningspunkten, 13.15–14.15

Sammanfattning: In connection with the study of the universal integral means spectrum for quasiconformal mapping, it turns out that the main term for small exponents and small Beltrami coefficients is governed by the asymptotic variance introduced by McMullen for a dynamical situation. This follows from work of Oleg Ivrii. The fact that this universal asymptotic variance is less than 1 is shown here. This then leads to the unexpected result that the quasiconformal universal variance is not of the form assumed so far. To obtain the result, we use duality to turn  the problem into a problem of analyzing an improvement in the Cauchy-Schwarz inequality. The resulting dual problem has geometric interpretation in terms of "zero packing". In the planar case this is related with Abrikosov´s analysis of superconductivity for which he obtained the Nobel prize.

Sun Jan 15 11:04:00 CET 2017

Onsdag 22 mars 2017, Thomas Geisser, Rikkyo University, Tokyo, Japan, och Institut Mittag-Leffler

Talare: Thomas Geisser, Rikkyo University, Tokyo, Japan, och Institut Mittag-Leffler

Titel: TBA

Tid och plats: Onsdag 22 mars 2017, Hopningspunkten, 13.15–14.15

Sammanfattning: TBA

Sun Jan 22 11:06:00 CET 2017

Onsdag 29 mars 2017, Panu Lahti, MAI

Talare: Panu Lahti, MAI

Titel: TBA

Tid och plats: Onsdag 29 mars 2017, Hopningspunkten, 13.15–14.15

Sammanfattning: TBA

Sun Jan 29 14:55:00 CET 2017

Sidansvarig: milagros.izquierdo@liu.se
Senast uppdaterad: Tue Feb 14 14:57:23 CET 2017